# TOTAL SYNTHESIS OF ( $\pm$ )-SARCOPHYTOL-M 

Yulin LI* Xiangjun YUE Yacheng XING<br>State Kcy Laboratory of Applied Organic Chemistry and Institutc of Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. CHINA


#### Abstract

The total synthesis of ( $\pm$ )-sarcophytol-M, a marine cembranol, was first achieved from geraniol through twelve steps by using intramolecular nucleophilic addition of sulfur-stabilized carbanion to ketone as the key step. $(+)$-Sarcophytol-M(1), a cembrane-type diterpenoid was first isolated from a soft coral (Sarcophyton glaucum) in 1989, and its structure was established as ( $3 E, 7 E, 11 E$, $1 R$ )-cembra-3,7,11-trien-1-ol ${ }^{1}$. As far as we know, the total synthesis of 1 has not been reported yet. Herein we wish to describe the total synthesis of ( $\pm$ )-sarcophytol-M.

In a previous work ${ }^{2}$, intermediate 2 has been prepared from geraniol via 7 steps from which the total syntheis of cembrene -C has been succeeded. With alcohol 2 in hand, the synthetic route of ( $\pm$ )-Sarcophytol-M from 2 was outlined below:




a) $\mathrm{CCl}_{4}, \mathrm{Ph}_{3} \mathrm{P}$, reflux, $78 \%$; b) $\mathrm{PhSNa}, \mathrm{McOH}, 80 \%$; c) TsOH , acetone, $98 \%$;
d) $\mathrm{LDA}-\mathrm{THF},-78 \mathrm{C}, 58 \%$; c) $\mathrm{Li}-\mathrm{EtNH}_{2},-78 \mathrm{C}, 78 \%$.

Ketal alcohol 2 was converted into its chloride 3 by chlorination usiny $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{CCl}_{4} .3$ was subjected to nuclephilic substitution to give the corresponding sulfuride $4^{3}$. After removal of the ketal protective group, the cyclized precursor 5 was obtained in $62 \%$ overall yield from 2 via 3 steps.

Precursor 5 was cyclized using LDA in anhydrous THF at -78C under argon atmosphere to give 6 in $58 \%$ yield. 6 was reduced with $\mathrm{Li}-\mathrm{EtNH}_{2}^{4}$ at -78 C to afford ( $\pm$ )-1 in $70 \%$ yield.

The intermediates 3-6 were first prepared and their structures were established by the spectral data of IR, MS and 'HNMR'. The spectral data of ( $\pm$ ) $\mathbf{- 1}$ coincide with those of literature ${ }^{1}$. Thus, the total synthesis of $( \pm)$-sarcophytol- $M$ was accomplished in twelve steps and in $8.9 \%$ overall yield from geraniol. The bioactive test is in progress.

## Acknowledgement

This work was supported by the National Natural Science Foundation of China and by the Special Research Grant for Doctoral Sites in Chinese Universities.

## References and notes

1. Kobayashi, M. and Osabe, K., Chem.Pharm.Bull., 1989,37(3), 631-636.
2. Mao, J. M., Li, Y., Hou, Z. J., Li, Y. L., and Liang, X. T., Science in China(Serics B), 1992, 35(3), 257-261.
3. Schwabe , R., Farkas,I., and Pfander,H., Helv. Chim. Acta, 1988, 71(1), 292-297.
4. Biellmann,J.F., and Ducep,J.B., Tetrahedron, 1971, 27, 5861-5872.
5. The spectral data
$3 \delta(80 \mathrm{MHz}): 0.96\left(d, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.20-2.40\left(m, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 3.96\left(d, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.90\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.80 \sim 5.60(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}=$ ); $m / z(\mathrm{EI}): 368\left(\mathrm{M}^{+}, 1 \%\right), 243(10), 135(17), 153(47), 93(30), 81(65), 71(100)$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 71.61 ; \mathrm{H}, 10.11 ; \mathrm{Cl}, 9.61$. Found: $\mathrm{C}, 71.71 ; \mathrm{H}, 10.08 ; \mathrm{Cl}, 9.34$.
$4 v_{\text {max }}: 740,651(\mathrm{SPh}) \mathrm{cm}^{-1} ; \delta(80 \mathrm{MHz}): 1.00\left(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-2.42\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 3.46\left(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SPh}\right), 3.90(\mathrm{~s}, 4 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 5.00-5.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=), 7.20-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} ; m / z(\mathrm{EI}): 442\left(\mathrm{M}^{+}, 15 \%\right)$, 389(20), 289(100), 261(15), 93(40), 81(60), 71(100). Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 75.97 ; \mathrm{H}, 9.56 ; \mathrm{S}$, 7.24. Found: C, 75.68; H, 9.60; S, 7.42.
$5 v_{\max }: 1711(\mathrm{~s}, \mathrm{C}=0), 739,651(-\mathrm{SPh}) \mathrm{cm}^{-1} ; \delta(80 \mathrm{MHz}): 1.01\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-2.40\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 3.46\left(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SPh}\right)$, $5.00-5.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=), 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} ; \mathrm{m} / \mathrm{z}(\mathrm{EI}): 398\left(\mathrm{M}^{+}, 10 \%\right), 313(10), 289(100)$, 275(40), 153(50), 81(65), 71(100). Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{OS}: \mathrm{C}, 78.34 ; \mathrm{H}, 9.61 ; \mathrm{S}, 8.04$. Found: C, 78.56; H, 9.62; S, 8.28.
$6 v_{\text {mux }}: 3390(\mathrm{~s}, \mathrm{OH}), 750,690(-\mathrm{SPh}) \mathrm{cm}^{-1} ; \delta(80 \mathrm{MHz}): 1.04\left(\mathrm{~d}, 6 \mathrm{H}, J=6.9, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-2.30\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{OH}\right), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CHSPh})$, $4.80-5.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=), 7.2-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} ; \mathrm{m} / \mathrm{z}(\mathrm{EI}): 398\left(\mathrm{M}^{+}, 0.4 \%\right), 305(20), 261(10)$, 153(50), 93(40), 81(65), 71(100). Aanl. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{OS}: \mathrm{C}, 78.34 ; \mathrm{H}, 9.61 ; \mathrm{S}, 8.04$. Found: C, 78.29; H, 9.58; S, 8.07.
(Received in China 20 November 1992)
